借鉴于d0evi1的博客
基础篇
数学基础
机器学习
coursera的课程
交大课程
神经网络
李宏毅bilili
coursera课程
tensorflow:
NLP
语法分析_陆俭明
推荐系统
Recsys 2016 tutorial: Lessons learned from building real-life recommender systems
借鉴于d0evi1的博客
数学基础
机器学习
coursera的课程
交大课程
李宏毅bilili
coursera课程
tensorflow:
语法分析_陆俭明
Recsys 2016 tutorial: Lessons learned from building real-life recommender systems
作为Latex的入门教程
$数学公式$
或者$$数学公式$$
行内公式以及行间公式
$E = mc^2$
$$
E=mc^2
$$
$$
x = 100 * y + z - 10 / 33 + 10 % 3
$$
$$
x=a_{1}^n \text +a_{2}^n
$$
()
,[]
和|
都表示它们自己,但是{}
因为有特殊作用因此当需要显示大括号时一般使用\lbrace \rbrace
来表示。
$$
f(x, y) = 100 * \lbrace[(x + y) * 3] - 5\rbrace
$$
分数 $\frac{1}{3}
开方 $\sqrt[3]{x}$
$\sqrt{5-x}$
Maria
You’ve gotta see her
Go insane and out of your mind
有过甜蜜,也有苦涩,其实,也是找到自我的过程,放弃一些错误的自以为是,不要眼高手低,承认自己。。
本周工作:
本周所得:
下周工作:
慢慢恢复更新的频率,相关技术书籍的阅读以及blog的编写。。
事情不要拖拉,房子以及电话上,不要总觉得理所当然。。
恢复那种战战兢兢的状态,一件事一件事地弄好。。
答应的事情,尽量坐到,做到心安就行,承认自己不行,并不是一件坏事,还是acer标称咯。。
neural netowrks and deep learning
神经网络的机器学习,主要分为几个部分
two important types of artificial neuron (the perceptron and the sigmoid neuron)
$$
output = \begin{cases}
0, & \text{if } \sum_{j}w_{j}x_{j} \leq threshold \
1, & \text{if } \sum_{j}w_{j}x_{j} > threshold
\end{cases}
$$
simplify the describe perceptrons
$$
w \cdot x \equiv \sum_{j}w_{j}x_{j} \
b \equiv -threshold
$$
$$
output = \begin{cases}
0, & \text{if } w \cdot x +b \leq 0 \
1, & \text{if } w \cdot x +b > 0
\end {cases}
$$
While the design of the input and output layers of a neural network is often straightforward, there can be quite an art to the design of the hidden layers
multilayer perceptrons orMLPs
feedforward neural networks
RNN networks, feedback loops are possible
two problems:
There are many approaches to solving the segmentation problem.
One approach is to trial many different ways of segmenting the image, using the individual digit classifier to score each trial segmentation. A trial segmentation gets a high score if the individual digit classifier is confident of its classification in all segments, and a low score if the classifier is having a lot of trouble in one or more segments.
The idea is that if the classifier is having trouble somewhere, then it’s probably having trouble because the segmentation has been chosen incorrectly. This idea and other variations can be used to solve the segmentation problem quite well.
10 outputs vs 4 outputs
gradient descent
$$
C(w,b) \equiv \frac{1}{2n}\sum_{x} \begin{Vmatrix} y(x)-a \end{Vmatrix}^2
$$
ball-rolling analogy
$$
\Delta C \approx \frac{\partial C}{\partial v1} \Delta v1 + \frac{\partial C}{\partial v2} \Delta v2
$$
$$
a’ = \sigma(wa + b)
$$
最近也是脑子爆炸,工作上不是很顺心,房子上也最终不一定能达成一致。。
本周工作:
本周所得:
下周工作:
慢慢将每周计划部分捡起来,充实自己
哎,房子能合租就合租,不能就转租,也没差。。只是以后尽量能不合租就不合租吧,尽量一起去看房,省的大家后面麻烦。。。
工作上和生活上,按部就班地来,毕竟要开始还放贷了,工作要更加努力才是。。
收拾生活,收拾心情,人生总是一场历练。。
负能量部分,也只能向blog吐槽一下,也就够了。。
加油。。